STAR VACUUM CUPS WITH MALE SUPPORTS The SV series of vacuum cups (STAR VACUUM) has been developed for handling flat and flexible objects such as cardboard layering pads or thin metal sheets without deformation, by virtue of the rubber reinforcement sectors inside these vacuum cups, which characterise their star-shaped bearing surface. They represent the perfect combination of a soft, flexible grip lip for the best surface adaptation and a bearing surface designed to ensure maximum stability and rigidity of the piece to be handled vertically or horizontally. The vacuum cups can be fitted with a male or female threaded metal fixing support in anodised aluminium. ### VACUUM CUPS | VACCOIN | 0010 | | | | | | | | | |--|--------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------------|-------------------------------------|------------------------------------|----------------------------------| | ltem | Force
Kg | A
Ø | B
∅ | C
Ø | D
Ø | E | G | Н | Weight
g | | SV 20 SR *
SV 25 SR *
SV 30 SR *
SV 40 SR *
SV 50 SR * | 0.95
1.43
2.00
3.62
5.51 | 14.2
14.5
16.0
23.0
32.0 | 6.0
6.0
6.0
8.25
12.25 | 5.0
5.0
5.0
6.35
10.5 | 22
27
32
43
53 | 4.5
4.0
4.0
4.8
7.5 | 1.0
1.75
1.75
2.25
2.70 | 8.0
8.5
10.3
13.0
16.5 | 1.4
1.6
2.3
5.0
11.0 | ^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone # С D ### MALE SUPPORTS | Item | A
Ø | В | C
Ø | D
Ø | E | F | G | Н | Support
material | For vacuum cup
item | Weight
g | |------------------------|---------------|----|----------------|---------------|-----|---|-----|------|------------------------|----------------------------------|--------------------| | 00 08 133 | 14.5 | 13 | G1/8" | 8.5 | 5.5 | 8 | 5.0 | 18.5 | aluminium | SV 20 SR
SV 25 SR
SV 30 SR | 3.5 | | 00 08 135
00 08 142 | 20.0
27.0 | | G1/4"
G1/4" | | | | | | aluminium
aluminium | | 9.5
15.7 | ## VACUUM CUPS WITH MALE SUPPORT | Item | Force
Kg | A
Ø | В | D
Ø | F | Н | Vacuum cup
item | Support item | Weight
g | |---------|--------------------|---------------|----|---------------|----|------|--------------------|---------------------|--------------------| | SV 20 * | 0.95 | G1/8" | 13 | 22 | 8 | 21.5 | SV 20 SR | 00 08 133 | 4.9 | | SV 25 * | 1.43 | G1/8" | 13 | 27 | 8 | 22.0 | SV 25 SR | 00 08 133 | 5.1 | | SV 30 * | 2.00 | G1/8" | 13 | 32 | 8 | 23.8 | SV 30 SR | 00 08 133 | 5.8 | | SV 40 * | 3.62 | G1/4" | 17 | 43 | 12 | 32.5 | SV 40 SR | 00 08 135 | 14.5 | | SV 50 * | 5.51 | G1/4" | 22 | 53 | 12 | 36.0 | SV 50 SR | 00 08 142 | 24.7 | Н D Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page Adapters for GAS - NPT threading available on page 1.130 ch = $$\frac{\text{mm}}{25.4}$$; pounds = $\frac{\text{g}}{453.6}$ = $\frac{\text{Kg}}{0.453}$ ^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone # 3D drawings are available on vuototecnica.net ### **VACUUM CUPS** | Item | Force
Kg | A
Ø | B
Ø | C
Ø | D
Ø | E | G | Н | Weight
g | |------------|--------------------|---------------|---------------|--------|---------------|-----|------|------|--------------------| | SV 20 SR * | 0.95 | 14.2 | 6.0 | 5.0 | 22 | 4.5 | 1.00 | 8.0 | 1.4 | | SV 25 SR * | 1.43 | 14.5 | 6.0 | 5.0 | 27 | 4.0 | 1.75 | 8.5 | 1.6 | | SV 30 SR * | 2.00 | 16.0 | 6.0 | 5.0 | 32 | 4.0 | 1.75 | 10.3 | 2.3 | | SV 40 SR * | 3.62 | 23.0 | 8.25 | 6.35 | 43 | 4.8 | 2.25 | 13.0 | 5.0 | | SV 50 SR * | 5.51 | 32.0 | 12.25 | 10.5 | 53 | 7.5 | 2.70 | 16.5 | 11.0 | ## **FEMALE SUPPORTS** | ltem | A
Ø | В | C
Ø | D
Ø | E | F | G | Н | Support
material | For vacuum cup
item | Weight
g | |------------------------|---------------|----|----------------|---------------|----------|----|-----|------|------------------------|----------------------------------|--------------------| | 00 08 132 | 14.5 | 13 | G1/8" | 8.5 | 8 | 12 | 5.0 | 17.0 | aluminium | SV 20 SR
SV 25 SR
SV 30 SR | 3.8 | | 00 08 134
00 08 141 | 20.0
27.0 | | G1/4"
G1/4" | | 10
10 | | | | aluminium
aluminium | | 8.3
19.7 | ## VACUUM CUPS WITH FEMALE SUPPORT | ltem | Force
Kg | A
Ø | В | D
Ø | F | Н | Vacuum cup
item | Support item | Weight
g | |-----------|--------------------|---------------|----|---------------|----|------|--------------------|---------------------|--------------------| | SV 20 F * | 0.95 | G1/8" | 13 | 22 | 12 | 20.0 | SV 20 SR | 00 08 132 | 5.2 | | SV 25 F * | 1.43 | G1/8" | 13 | 27 | 12 | 20.5 | SV 25 SR | 00 08 132 | 5.4 | | SV 30 F * | 2.00 | G1/8" | 13 | 32 | 12 | 22.3 | SV 30 SR | 00 08 132 | 6.1 | | SV 40 F * | 3.62 | G1/4" | 17 | 43 | 14 | 27.0 | SV 40 SR | 00 08 134 | 13.3 | | SV 50 F * | 5.51 | G1/4" | 22 | 53 | 14 | 30.5 | SV 50 SR | 00 08 141 | 30.7 | Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page Adapters for GAS - NPT threading available on page 1.130 ^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone ^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicone