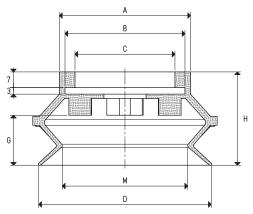
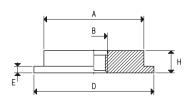
The cups described on these pages share the same features with the previously described bellows cups, only these have larger dimensions that allow them to lift much heavier loads; moreover, their anodised aluminium supports also have a central threaded hole for their fastening to the automation. The larger ones also have an additional side hole for vacuum connection. The difference is that these supports are provided with a disc instead of with a pin. These cups can be cold fitted onto their supports without any adhesives.

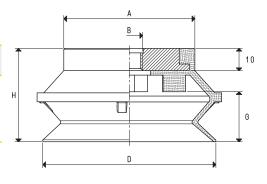

To replace, simply request the single vacuum cup indicated in the table in the desired compound.

VACUUM CUP


Item	Force Kg	Volume cm ³	A Ø	B Ø	C Ø	D Ø	G	Н	M Ø	Bellows stroke mm
01 75 42 *	11.93	89.4	59	54	45	78	22.5	42	56	22.5

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

SUPPORTS

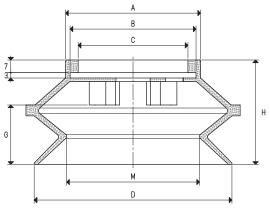

Item	A Ø	B Ø	D Ø	E	Н	Support material	For vacuum cup item	Weight g
00 08 126	45	M12	54	3	10	aluminium	01 75 42	45.5
00 08 465	45	G1/4"	54	3	10	aluminium	01 75 42	41.5
00 08 193	45	G3/8"	54	3	10	aluminium	01 75 42	41.5
00 08 143	45	G1/2"	54	3	10	aluminium	01 75 42	41.5

VACUUM CUPS WITH SUPPORT

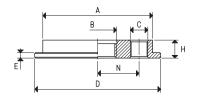
Item	Force Kg	A Ø	B Ø	D Ø	G	Н	Vacuum cup item	Support item	Weight g
08 75 42 *	11.93	59	M12	78	22.5	42	01 75 42	00 08 126	94.8
08 75 42 1/4" *	11.93	59	G1/4"	78	22.5	42	01 75 42	00 08 465	90.8
08 75 42 3/8" *	11.93	59	G3/8"	78	22.5	42	01 75 42	00 08 193	90.8
08 75 42 1/2" *	11.93	59	G1/2"	78	22.5	42	01 75 42	00 08 143	90.8

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page 1/2. Adapters for GAS - NPT threading available on page 1.130

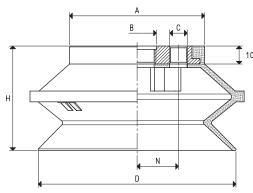

REINFORCED BELLOWS VACUUM CUPS WITH SUPPORTS

VACUUM CUPS


Item	Force Kg	Volume cm ³	A Ø	B Ø	C Ø	D Ø	G	Н	M Ø	Bellows stroke mm
01 110 58 * 01 150 74 *		281.9 726.1			61 98	110 150	33 49		74 103	33 49

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

SUPPORTS


Item	A Ø	B Ø	C Ø	D Ø	E	N	Н	Support material	For vacuum cup item	Weight g
00 08 162 00 08 163		G1/2" G1/2"				23 35			01 110 58 01 150 74	78.9 211.8

VACUUM CUPS WITH SUPPORT

Item	Force Kg	A Ø	B Ø	C Ø	D Ø	Н	N	Vacuum cup item	Support item	Weight g
								01 110 58 01 150 74		190.7 458.7

^{*} Complete the code indicating the compound: A= oil-resistant rubber; N= natural para rubber; S= silicon

Note: The force of the vacuum cups indicated in the table represents 1/3 of the value of the theoretical force calculated at a level of vacuum of -75 KPa and a factor of safety 3. Transformation ratio: N (newton) = Kg x 9.81 (force of gravity) inch = $\frac{mm}{25.4}$; pounds = $\frac{g}{453.6}$ = $\frac{Kg}{0.4536}$ Adapters for GAS - NPT threading available on page 1.130